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Influence of the chain mobility on the dynamic scaling of 
chain-chain aggregation in two dimensions 

Jean-Marc Debierre and Loi'c Turban 
Laboratoire d e  Physique du Solidet, Universite de Nancy 1, BP 239, F-54506 Vandoeuvre- 
lis-Nancy, France 

Received 5 June 1987, in final form 6 October 1987 

Abstract. The dynamic scaling of the 2D chain-chain aggregation model with a diffusion 
coefficient varying with the size k of the chains as k Y  is investigated by Monte Carlo 
simulations. Assuming that the sticking probability for two chains of size k is proportional 
to k-? ,  the mean chain size grows like f z  with z = (1 + cp - y ) - ' .  

1. Introduction 

The dynamics of aggregation of randomly diffusing clusters has been intensively 
investigated (Kolb 1984, Vicsek and Family 1984, Botet and Jullien 1984, Meakin et 
a1 1985). A simple model (Meakin 1983, Kolb er a1 1983) in which the growth results 
from the aggregation of clusters is believed to retain the main features of many physical 
phenomena such as gelation, polymerisation or coagulation (Friedlander 1977, Jullien 
and Botet 1987). A chain-chain aggregation model, liable to describe the linear 
polycondensation reactions, has been recently introduced (Debierre and Turban 1987a). 
In this case, unramified clusters (chains) perform a Brownian motion on a lattice and 
two chains irreversibly stick when their tips touch (i.e. amve at first-neighbour posi- 
tions). 

The statics and dynamics of this model have been previously studied assuming a 
size-independent chain mobility-a simple but unphysical assumption. In this paper 
the diffusion coefficient is taken to be proportional to s y  for an s-site chain and a 
systematic study of the influence of y on the dynamics is presented. 

The model and the Monte Carlo procedure are described in detail in 0 2. The 
simulation results are analysed in 0 3 using a scaling theory known to hold for most 
aggregation processes. The evolution of the chain radius is discussed in 0 4. In 0 5 a 
scaling law giving the dependence of the dynamic exponent z on the chain mobility 
exponent y is obtained and used to determine a sticking probability exponent 9. In 
0 6 the form of the scaling function is discussed in the framework of the mean-field 
Smoluchowski theory and the conclusion is given in 0 7. 

2. Numerical simulations 

The simulations were performed on an L X  L square lattice with periodic boundary 
conditions, for values of the mobility exponent y ranging from -2.0 to 0.5, in order 
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1030 J-M Debierre and L Turban 

to study the variation of the dynamic exponent z with y. The value y = -1/ D, where 
D is the chain fractal dimension, corresponds to the Stokes-Einstein relation for the 
mobility. We were limited to values of y s 0.5 because positive y values require more 
computer time. Averages were taken over 50 simulations for each y value. 

A simple scaling behaviour is expected for large time and chain size for a vanishing 
density on an infinite system. In practice the system size L and the density are restricted 
by computer memory and computer time, since decreasing p requires averaging over 
more samples in order to limit the statistical fluctuations. In a finite system saturation 
effects are always observed at long times (figure 1) because either one is left with a 
single chain or, as was the case in our simulations, the remaining chains can no longer 
stick due to sterical effects. The maximum time tf (table 1) was chosen to avoid these 
effects. 

in t 
Figure I .  Log-log plot of the mean chain size E as a function of the time f .  The results 
are from simulations performed on L x L square lattices with increasing size L, for y = 0 
and particle density p = 0.03 independent of L. 

We have worked with an initial monomer density p = 0.016 and sample size L = 256. 
Similar values were used in a study of cluster-cluster aggregation (Vicsek and Family 
1984). A preliminary study with y = O  (Debierre and Turban 1987a) indicated no 
detectable effect on the exponents and cluster-size distribution when the density or 
the size were changed to p ~ 0 . 0 3  and L=400. Initially, N o = p L 2 =  1024 particles 
(one-site chains) are randomly distributed on the lattice sites with the restriction that 
nearest-neighbour occupation is forbidden. At each Monte Carlo step, a k-site chain 
is randomly selected among all the chains of the sample, with a probability 

Pk = k ' I P t n a x  (2.1) 
where 

k 

is a normalisation coefficient and N ( k ,  t )  is the number of chains of size k at time r. 
The selection with probability Pk of a k-site chain is performed as follows, in order 
to spare computer time. On the interval [0, pmaX] adjacent segments are put in 
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correspondence with all the chains of the sample, the length of a segment being k Y  
for a k-site chain. Then to each random number uniformly distributed on the interval 
[0 ,  p m a x ]  corresponds a chain of size k with probability P k .  

Once a chain has been selected, the physical time is incremented by the quantity 
S t  = l/pmax so that the jump frequency of a k-site chain is vk - pk/St  - k Y .  When y = 0,  
pmax = N (  t ) ,  the total number of chains at time t, P k  = S t  = 1 / N (  t )  and V k  - 1, indepen- 
dent of the size k. Then the chain is moved as a whole by one lattice unit in a randomly 
chosen direction provided no site is doubly occupied in the new position, otherwise 
it remains in the initial one. When the move succeeds, the first-neighbour sites of the 
two chain tips are examined and sticking occurs when another chain tip is found. The 
formation of loops is prevented as the two tips of the same chain are not allowed to 
stick together. Since the two tips are examined successively and a chain is renumbered 
as soon as it sticks, this procedure also takes into account the situation in which the 
two tips of a chain might become connected through another chain. The chain-size 
distribution function 

n ( k ,  t )  = N ( k ,  t ) / L 2  (2.3) 

and the mean radius of gyration R ( k ,  t ) ,  where the bar indicates an average at time t 
of 

over the chains of size k, are stored for 50 values of the physical time t i  at regular 
intervals on a logarithmic scale: 

ti = [(1.2)1-*.2y]1-' ( i  = 1,50). (2.5) 

3. Scaling for the chain-size distribution function 

We assume that the chain-size distribution function is a generalised homogeneous 
function of the time t and chain size k :  

n ( k ,  t )  = b-)'nn(bYkk, b y i f ) .  

With b = k-l/"k and b = t - l / y ~ ,  we obtain 

n ( k ,  t )  = k - 8 f ( x )  

n ( k ,  t )  = t - " g ( x )  

(3.1) 

( 3 . 2 ~ )  

(3.2b) 

where z = y k / y , ,  8 = -yn/yk and x = k /  tZ .  According to the Smoluchowski theory the 
two scaling functions f ( x )  and g ( x )  are assumed to behave as follows (Vicsek and 
Family 1984, van Dongen and Ernst 1985, Kang et a1 1986). When x >> 1, both functions 
decrease exponentially and when x << 1, depending on the kinetics, one expects either 
a power-law behaviour (class I and class I1 kinetics): 

f ( x )  - xB-' g ( x )  - xw'2-8  (3.3) 
or an exponential decrease (class 111 kinetics). Since f ( x )  = x e g ( x )  for class I and 
class I1 kinetics, the exponents w and T which, according to equations (3.2) and (3.3), 
govern the evolution of the distribution function when x<< 1 

n ( k ,  t )  - k-'r-" (3.4) 
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satisfy the following scaling law: 

The mth moment of the distribuiton function 
m 

M m ( t )  = kmn(k ,  1 )  
k=l 

may be written as 

Mm( t )  = k"n(k, t )  dk = t " ( m + ' - e )  xm-ef(x) dx. Ip (3.7) 

At large times, the contribution of the lower limit in the last integral is irrelevant for 
class 111 and 

Mm( 2)  - p ( m + ' - @ )  all m (3.8) 

whereas for class I and class I1 

Mm( 2) - t z ( m + ' - e )  m 2 7 - 1  (3.9a) 

Mm( t )  - t z ( i - 8 )  m < 7 - 1 .  (3.9b) 

Since the particle density, which is given by the first moment, is a constant, one has 
the following two alternatives: 

e = 2  class 111 or T 4 2 ( 3 . 1 0 ~ )  

e = T  T > 2 .  (3.10b) 

In the second case equation (3.5) gives w = 0 which corresponds to a static distribution 
as for percolation clusters (Herrmann 1986). Thus, for a dynamic aggregation process 
with constant particle density, 8 = 2 and T < 2 for class I and class I1 kinetics. This 
result is confirmed by previous simulation results (Kolb 1984, Vicsek and Family 1984, 
Botet and Jullien 1984, Meakin et a1 1985, Kang et a1 1986, Debierre and Turban 
1987a, b). 

The number of chains at time t, N (  t), is proportional to MO( t )  so that 

N (  t )  - r-' class 111 or T <  1 ( 3 . 1 1 ~ )  

N (  r )  - t P W  T >  1 .  (3.11b) 

Finally, the mean size of the chains 
/ \ - 1  

(3.12) 

grows like 

E( t )  - tZ. (3.13) 

The variations of In 6 and In N with In r shown in figure 2 indicate that either we are 
in class 111 or TS 1 for all the values of y studied. 

Since when x<< 1,  f(x)-x2- '  with 7 < 2  or f(x)<< 1 in class 111, f ( x )  is always 
bell-shaped with a maximum value of fm,, =f(xf). The same is true of g ( x )  in class 
I11 or when T < 0 ( g ( x )  - x-' according to equations (3.3) and (3.5)) whereas g ( x )  is 
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Figure 2. Log-log plot of the total number of chains N and the mean chain size E as 
functions of the time r, for three values of the mobility exponent y = -2.0, 0 and 0.5. The 
straight parts of the In N and In E curves have slopes - 2  and z respectively. 

monotonic when T > 0. The limiting case T = 0 corresponds to a size-independent 
distribution function. 

Taking the logarithm of both sides in equation ( 3 . 2 ~ )  with 6 = 2 gives 

In n ( k ,  t )= -2 Ink+ ln f (x )  (3.14) 

which at a given time tu may be written 

In n ( k ,  t , ) + 2  In k - I n f m a , = l n ( f ( k l t ~ ) l f m a , ) .  (3.15) 

For each time r,, there is a size k, such as x f=  k u / t i ,  thus the points In k,, In n ( k , ,  t u )  
lie on a straight line, with slope -2 and intercept In f,,,, which is the envelope of the 
curves In n ( k ,  t , )  against In k. Our data are consistent with this behaviour (figure 3). 
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Figure 3. Plot of In N ( k ,  t , )  against In k at different times 1,. The slope of the envelope 
is close to -2 in each case for: y = -2.0 ( t ,  = 21 052-270 292, slope = -1.89); y = 0 ( 1 ,  = 

1255-7584, slope = -1.91); y = 0.5 ( t ,  = 602-3104, slope = -2.02). 

In the same way, in class 111 or when T < O ,  the envelope of the curves In n ( k , ,  r )  
against In t is a straight line with slope -22. T h i s  is what is observed for y < 0. A 
change of behaviour occurs near y = 0 and there is no common tangent when y > 0 
(figure 4). To sum up, at small x one may expect a power-law behaviour with 7s 1 
when y 3 0 and either exponential (class 111) or power-law behaviour with T < 0 when 
y G 0 .  

4. Scaling of the radius of gyration 

One may assume that the mean radius of gyration I? satisfies the homogeneity relation 
E ( k ,  t )  = bl?(bYkk, bylt) .  (4.1) 



Influence of the mobility on chain- chain aggregation 1035 

I n t  

I n t  

In t 
Figure 4. Plot of In N(k,, 1 )  against In t for different chain sizes k, = 1-25. For y = -2, 
the slope of the envelope is close to -22. For y = 0, the curves coalesce for large t values. 
For y = 0.5, the different curves do not intersect and there is no envelope. For y = 0 and 
0.5, the common slope at large time is -w .  

The usual procedure leads to: 

R ( k ,  t )  = k-”’kq(x)  = k l i D q ( x )  

R ( k ,  t )  = t - ’ / y c r ( x )  = t Z i D r ( x )  

( 4 . 2 a )  

(4.26) 

where as above x = k /  tZ,  z = yk/y,  and D = -yk is the fractal dimension of the chains 
( k  - R D ) .  

Figure 5 gives the variations of In k with In R ( k ,  t )  for different values of y. It 
turns out that q ( x )  is almost constant ( ~ ( x ) - x ’ / ~ )  and the slope gives D. 

If a mean radius R ( t )  is defined by taking an average on the size k at time t :  
/ \ - 1  

R ( t ) = z  k n ( k ,  t ) R ( k ,  t )  kn(k ,  t )  
k ( k  

( 4 . 3 )  
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Figure 5. Plot of In k against In R(k,  1 )  for different values of y. The curves are systemati- 
cally shifted by one ordinate unit (ordinates given for the lowest curve y = -2). The slopes 
give D values slightly increasing from 1.26 for y = -2 to 1.33 for y = 0.5. The fluctuations 
at large k are due to the small number of chains involved in the average. 

then equations (3.26) and (4.26) lead to 
R (  t )  - t z 'D  (4.4) 

so that the mean chain size 
E - t ' - E D  (4.5) 

and I?( t )  may also be used to get D (figure 6). Similar values of the fractal dimension 
are obtained in both ways, slightly increasing with y (table 1) and close to the 
self-avoiding walk value D,,, = j. 

Figure 6. Plot of In E against In J ? ( I )  for different values of y. (The curves are shifted as 
in figure 5 . )  R (  I )  is the mean radius of gyration of all the chains in the sample at time 1. 
The straight parts of the curves have a slope D slightly increasing from 1.28 for y = -2 to 
1.34 for y = 0.5. 
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Table 1. Maximum time I , ,  static and dynamic exponents 0, z, T and w obtained for 
different values of y .  T and w are only estimated for the positive values of y for which 
the scaling function g(x) is monotonic. Also given are the parameters A and (I obtained 
from a least-square fit of g(x) by Ax-A exp(-ax) with A = y -0.36. The value of z for the 
'free reptation' limited chain-chain aggregation model (third line) is nearly equal to that 
for y = -1, but A and a are not the same in both cases; since the 'free reptation' model 
has been studied on the triangular lattice, geometrical correction factors are expected. 

Y 'I D Z 7 W A a 

-2.0 
-1.0 

-1/D 
-0.5 
-0.25 

0 
0.25 
0.5 

rept 

2.7 x io5 
4.5 x io4 

3 . 0 ~  io4 

1 . 2 ~ 1 0 ~  
7.6 x io3 
4.9 x 1 0 3  
3.1 x io3 

- 

1.8 x lo4 

1.27 
1.29 
1.30 
1.30 
1.30 
1.30 
1.32 
1.33 
1.34 

0.3 1 
0.44 
0.43 
0.49 
0.55 
0.63 
0.74 
0.87 
1.10 

- 
0.1 
0.3 
0.4 

- 
1.4 
1.5 
1.8 

15 
10 
3 

12 
13 
1s 
14 
15 
30 

8 
9 
6 

11 
12 
15 
19 
27 
58 

5. Sticking probability and scaling law for L 

A simple scaling argument has been proposed (Kolb 1984, Botet and Jullien 1984) 
giving a relation between static and dynamic exponents of the cluster-cluster aggrega- 
tion model. It may be extended to the case of diffusion-limited chain-chain aggregation 
in the following way. Let us assume that the chain size remains close to its average 
value k: This is expected to occur for large negative values of y where monomers 
react first, then dimers and so on, leading to a narrow size distribution. Consider a 
supperlattice with lattice parameter and No monomers. There are No/E chains on 
the ( L / R ) d  cells of the superlattice. The cell occupation probability is 

p = ( N o / L d ) ( R d / E ) - R d - D .  (5.1) 
A given chain stays on the same cell during a time 

- E - Y R ~  - R Z - Y D  (5.2) 
During the random walk of a chain on the superlattice, another chain is encountered 
with probability p at each step of length R. Let us assume that the two chains stick 
together with a probability p ( E ) - E - '  during the time interval A t  they spend on 
nearest-neighbour cells. Then the number of steps n necessary for the chain to stick 
is such that 

nPP(Q - 1 (5.3) 
and the characteristic sticking time is 

(5.4) 

When the length scale is changed by a factor b (8'= b-'R,  R =  b-DE), I is rescaled 
by a factor by((  t" = byti) with 

F- nAr - A t / ( p p ( E ) )  - R 2 - d + D ( 1 + 9 - y ) .  

y ,  = d - 2  - D(1-t cp - y )  

and the dynamic exponent z is given by 
(5.5) 

= Y,/Y,  = [(2 - d ) / D +  ( I  + $0 - y ) ] - ' .  (5.6) 
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Figure 7. The inverse of the dynamic exponent z plotted against the chain mobility exponent 
y. The slope of the line obtained by a least-squares fit is -0.92 and zY’ (0 )  = 1.36. 

A linear relation between z - ’  and y is supported by our numerical results in the range 
of y values investigated (table 1 and figure 7), the slope is near to -1 and we obtain 
the following estimate for the sticking probability exponent: 

cp = 0.36 * 0.02 (5.7) 

a value which is independent of y. During the time interval At  (equation ( 5 . 2 ) )  where 
the two chains are close together, the number of steps is A n  - E Y A t  - R2.  Assuming 
that the number of times the two chains come into contact is proportional to A n  and 
that contacts occur between all the monomers of the two chains with the same 
probability, a contact will involve two end monomers with a probability proportional 
to E-’so that we have 

(5.8) 

for the sticking probability and cp = 0.46 * 0.05, not too far from the observed value. 
Surprisingly no qualitative change in the dynamics is observed for the positive values 
of y studied. When y > 0, the large chains move faster than the small ones and the 
aggregation process is of the particle-chain rather than of the chain-chain type. This 
change probably occurs at higher y values for which unfortunately the simulations 
are much longer. 

p ( c )  - E-2(1-1/D) 

6. Scaling functions in the Smoluchowski theory 

A mean-field description of colloidal aggregation, in which the variation of the cluster 
structures and the spatial fluctuations of the concentrations n(k, t )  are neglected, is 
provided by the Smoluchowski equation (Smoluchowski 1916): 

a n ( k ,  [ ) / a t  = +  K ( i , j ) n ( i ,  t ) n ( j ,  t ) - n ( k ,  t )  K ( k , j ) n ( j ,  t )  (6.1) 

which might be valid at and above a critical dimension d,  = 2 (Kang and Redner 1984, 
Kang et a1 1986, Ziff et a1 1985). The change in the k-mer concentration is equal to 

i + j = k  j 



Injuence of the mobility on chain - chain aggregation 1039 

the gain by combination of i- andj-mers such as i +J = k, minus the loss by combination 
of k-mers with any other j-mers. The kernel K ( i , j )  contains all the kinetics and 
structural features of the model. 

For symmetric homogeneous kernels 

K (a i ,  a j )  = a ” K  ( i , j )  = a A K  ( j ,  i )  ( 6 . 2 ~ )  

K ( i ,  j ) -  i p j ”  j > > i ; A = p + v  (6.26) 

the exponent z is given by (Botet and Jullien 1984, Kang et a1 1986): 

z = ( l - A ) - ’  (6.3) 

and the asymptotic behaviour of the scaling function g ( x )  is known in the scaling limit 
(van Dongen and Ernst 1985). 

For large x values, the gain term in equation (6.1) dominates and 

g ( x )  = A x - A  exp(-ax) x > > l ;  v < l  (6.4) 

whereas when x<< 1, depending on p, three different classes are obtained: 

class I P>O g(x) = Bx-‘ T = ~ + A  ( 6 . 5 ~ )  

class I1 p = O  g ( x )  = Bx-‘ T < ~ + A  (6.51) 

class 111 p < O  g ( x )  -exp(-lbl~-~’”).  ( 6 . 5 ~ )  

I n  classes I1 and I11 more explicit results require the knowledge of the kernel. In the 
Brownian aggregation of clusters the appropriate kernel is the product of a capture 
cross section by a diffusion coefficient for the relative motion of the clusters (Ziff et 
a1 1985): 

Kc, ( i ,  j ) - ( i ” ” + j ” D ) d - 2 ( i y + j y ) .  (6.6) 
This expression may be understood as follows. Consider a pair of clusters with size i 
and j performing a fractal random walk with dimension d, on a lattice. In  the reference 
frame where the j-mer is at rest, the jump frequency U,, (relative diffusion coefficient, 
Chandrasekhar (1943)) of the i-mer is i Y . t j Y .  The i-mer is surrounded by a sphere of 
influence of radius R ,  = i ” D + j ” D  and during a time dt, vv d t  steps are executed and 
a volume of influence dfl,, is swept. This volume may be measured by covering it with 
non-intersecting spheres of volume R i  centred on the trajectory. Each sphere contains 
R >  steps so that vijRUd* d t  spheres are needed and 

dfl,/dt = v ~ R ~ , - ~ - .  (6.7) 
Equation (6.6) follows with d, = 2 for a Brownian trajectory. 

For the chain-chain aggregation one must take care of the sticking probability. 
This may be done by introducing a homogeneous correction factor in equation (6.6): 

( 6 . 8 ~ )  

(6.86) 

(6.812) 

A = ( d  - 2 ) /  D +  y - cp (6.9) 
a value which is consistent with equations (6.3) and (5.6). 
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According to equation (6.6), when d 2 2 and j >> i, one obtains 

K d  i, j )  - J . y + ( d - 2 ) /  D y s o  ( 6 . 1 0 ~ )  

K c l ( i , j )  - i Y J . ( d - 2 ) l D  Y < O  (6.10b) 

so that p = 0 when y 2 0, p < 0 when y < 0 and there is a critical value of the diffusion 
exponent yc = 0 for cluster-cluster aggregation where the scaling function changes 
from a power law to an exponential at small x. The simulation results for d = 3 (Meakin 
et a1 1985, Ziff er al 1985) are in reasonable agreement with the mean-field predictions. 
The situation is less clear in two dimensions where logarithmic corrections are expected. 

The scaling functions for chain-chain aggregation, f ( x )  and g(x), with y between 
-2.0 and 0.5 are displayed in figure 8. We have only included plots of the scaled 
distribution function at large times. The data collapse is reasonable for both f ( x )  and 
g(x) thus confirming the homogeneity assumption in equation (3.1). This automatically 

5 l b l  

0 

* 
h 
c 

- - 
- 

-5 

-8 -6 -4 -2  0 
In x 

Figure 8. Plots of ( a )  Inf(x) and ( b )  In g(x) against In x for ten of the last times ti 
( i  =40-491, for different values of y. Note that Inf(x) is always bell-shaped while In g(x) 
is bell-shaped only when y 0. In both cases the data for k = 1 have been discarded. For 
chain size k >> 1 ,  n(k ,  t )  has been averaged on a small interval centred on k 
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ensures that the scaling law w = (2 - T)Z is satisfied in class I or 11. It appears that the 
scaling functions for different values of y have a common tangent but we found no 
explanation for this behaviour. We verified through least-squares fits of g ( x )  with A 
and a as free parameters that the behaviour at large x is consistent with equation (6.4). 
The values of the parameters are given in table 1. When y 2 0, g ( x )  is always monotonic 
so that a power law is expected when x << 1. The fits led to the values of the exponent 
7 given in table 1 .  We always have 7 < 1 + A corresponding to class I1 behaviour and 
also 7 < 1, as required when N (  t )  - t-'. When y s 0, on the grounds of Smoluchowski 
theory, a power law with T < O  (class 11) or an exponential (class 111) are equally 
plausible. Unfortunately it was not possible to discriminate between both cases on 
the basis of the fits alone. However, effective T values obtained when a power law is 
assumed are found to be rapidly decreasing with A when y < 0, whereas the variation 
is linear when y > 0. This might indicate a change from class I1 to class I11 at a critical 
value yc = 0. The behaviour of h( i, j )  when j >> i governs, through the exponent p, the 
dynamics of the system (class I, I1 or 111). A simple guess would be 

( 6 . 1 1 ~ )  h( i, j )  - ( 
for which: 

(6.11 b )  

( 6 . 1 1 ~ )  

i.e. p < O  and class I11 behaviour for all the values of y, in contradiction with the 
simulation results. Taking 

( 6 . 1 2 ~ )  h(  i, j )  - ( i' + jq)-' 
gives 

p = O  y z o  class I1 (6.12b) 

P = Y  Y < O  class I11 ( 6 . 1 2 ~ )  

in agreement with the simulations. But this choice is only an ad hoc assumption and 
a numerical study of the kernel is needed to clarify this point. 

7. Conclusion 

The dynamics of chain-chain aggregation is qualitatively similar to that of cluster- 
cluster aggregation. The evolution of the size distribution function with the mobility 
exponent y is comparable, changing from monodisperse to polydisperse when y 
increases. The case of chains moving through reptation (Debierre and Turban 1987b) 
corresponds to y = -1,  i.e. to a monodisperse distribution. The main difference with 
cluster-cluster aggregation is that the process is both diffusion and reaction limited 
since two chains do not stick at each contact but have to look for their tips before 
they stick. This may be taken into account by the introduction of a sticking probability 
h ( i , j )  which is homogeneous of degree -Q, where the sticking exponent cp is found 
to be independent of y. 

The evolution of the scaling functions f ( x )  and g ( x )  with the mobility exponent 
y has been analysed in the framework of the Smoluchowski theory. The kernel 
appropriate for cluster-cluster aggregation must be changed by the factor h ( i , j )  for 
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the sticking probability which is not explicitly known. Since logarithmic corrections 
to the Smoluchowski theory might affect the dynamics in two dimensions, we intend 
to study the kernel in three dimensions. 

The dynamics of chain-chain aggregation in three dimensions has been studied 
and will be published soon. The influence of d, ,  the fractal dimension of the chain 
motion, will be examined in a study of ballistic aggregation which is beginning. Finally 
let us mention that in real polycondensation reactions the chain may not stick 
indifferently at both ends; only specific reactions between functional end groups are 
allowed and the dynamics is affected (Leyvraz and Redner 1986). Results in this 
direction have also been obtained. 
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